Associative algebras associated to étale groupoids and inverse semigroups

Benjamin Steinberg, City College of New York

May 11, 2014 Partial Actions and Representations Symposium

Representation Theory

Inverse semigroups

Future work

Introduction

Groupoid Algebras

Representation Theory

Inverse semigroups

Future work

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Background

 Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:
 - commutative C*-algebras

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:
 - commutative C*-algebras
 - group C^* -algebras

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:
 - commutative C*-algebras
 - group C^* -algebras
 - group action C^* -algebras

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:
 - commutative C*-algebras
 - group C^* -algebras
 - group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:
 - commutative C*-algebras
 - group C^* -algebras
 - group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras
 - inverse semigroup C^* -algebras.

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:
 - commutative C*-algebras
 - group C^* -algebras
 - group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras
 - inverse semigroup C^* -algebras.
- Algebraic properties can often be seen from the groupoid.

- Groupoid C*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph.
- They simultaneously generalize:
 - commutative C*-algebras
 - group C^* -algebras
 - group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras
 - inverse semigroup C^* -algebras.
- Algebraic properties can often be seen from the groupoid.
- Morita equivalence of groupoid algebras is often explained by a Morita equivalence of the groupoids.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Étale groupoids

• Étale groupoids form one of the most important classes of groupoids.

- Étale groupoids form one of the most important classes of groupoids.
- G = (G₀, G₁) is étale if d: G₁ → G₀ is a local homeomorphism.

- Étale groupoids form one of the most important classes of groupoids.
- $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ is étale if $d: \mathcal{G}_1 \to \mathcal{G}_0$ is a local homeomorphism.
- We assume that \mathcal{G}_0 is locally compact Hausdorff, but \mathcal{G}_1 need not be Hausdorff.

- Étale groupoids form one of the most important classes of groupoids.
- $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ is étale if $d: \mathcal{G}_1 \to \mathcal{G}_0$ is a local homeomorphism.
- We assume that \mathcal{G}_0 is locally compact Hausdorff, but \mathcal{G}_1 need not be Hausdorff.
- An étale groupoid \mathcal{G} is ample if \mathcal{G}_0 has a basis of compact open sets.

- Étale groupoids form one of the most important classes of groupoids.
- $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ is étale if $d: \mathcal{G}_1 \to \mathcal{G}_0$ is a local homeomorphism.
- We assume that \mathcal{G}_0 is locally compact Hausdorff, but \mathcal{G}_1 need not be Hausdorff.
- An étale groupoid \mathcal{G} is ample if \mathcal{G}_0 has a basis of compact open sets.
- Many of the most important examples come from ample groupoids: discrete group algebras, Cuntz-Krieger/graph algebras and inverse semigroup algebras.

- Étale groupoids form one of the most important classes of groupoids.
- $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ is étale if $d: \mathcal{G}_1 \to \mathcal{G}_0$ is a local homeomorphism.
- We assume that \mathcal{G}_0 is locally compact Hausdorff, but \mathcal{G}_1 need not be Hausdorff.
- An étale groupoid $\mathcal G$ is ample if $\mathcal G_0$ has a basis of compact open sets.
- Many of the most important examples come from ample groupoids: discrete group algebras, Cuntz-Krieger/graph algebras and inverse semigroup algebras.
- Counting measure gives a left Haar system in this context.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Discrete analogues

• Many groupoid C^* -algebras have analogues in the context of associative algebras.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Many groupoid C*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.

- Many groupoid C^* -algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are discrete analogues of Cuntz-Krieger algebras.

- Many groupoid C*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are discrete analogues of Cuntz-Krieger algebras.
- Discrete analogues of algebras of higher rank graphs have also been considered.

- Many groupoid C*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are discrete analogues of Cuntz-Krieger algebras.
- Discrete analogues of algebras of higher rank graphs have also been considered.
- Surprising similarities between operator algebras and their discrete analogues have been known for some time.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

History

• In 2009 I introduced a discrete analogue of groupoid C^* -algebras for ample groupoids.

- In 2009 I introduced a discrete analogue of groupoid C^* -algebras for ample groupoids.
- My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.

- In 2009 I introduced a discrete analogue of groupoid C^* -algebras for ample groupoids.
- My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.
- Initially, I focused on applications to inverse semigroup algebras.

- In 2009 I introduced a discrete analogue of groupoid C^* -algebras for ample groupoids.
- My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.
- Initially, I focused on applications to inverse semigroup algebras.
- Groupoid algebras over C were rediscovered later by L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who kindly dubbed them "Steinberg algebras."

- In 2009 I introduced a discrete analogue of groupoid C^* -algebras for ample groupoids.
- My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.
- Initially, I focused on applications to inverse semigroup algebras.
- Groupoid algebras over C were rediscovered later by L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who kindly dubbed them "Steinberg algebras."
- My hopes have since been borne out by J. Brown,
 L. O. Clark, C. Farthing, A. Sims and M. Tomforde who produce new results faster than I can keep up with.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Groupoid algebras

• k is a commutative ring with unit endowed with the discrete topology.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- k is a commutative ring with unit endowed with the discrete topology.
- \mathcal{G} is an ample groupoid.

- k is a commutative ring with unit endowed with the discrete topology.
- \mathcal{G} is an ample groupoid.
- $\Bbbk G$ denotes the continuous \Bbbk -valued functions on G with compact support (adjusted as usual for non-Hausdorff).

- k is a commutative ring with unit endowed with the discrete topology.
- \mathcal{G} is an ample groupoid.
- &G denotes the continuous &-valued functions on G with compact support (adjusted as usual for non-Hausdorff).
- Ample implies there are many such functions.

- k is a commutative ring with unit endowed with the discrete topology.
- \mathcal{G} is an ample groupoid.
- &G denotes the continuous &-valued functions on G with compact support (adjusted as usual for non-Hausdorff).
- Ample implies there are many such functions.
- The product is convolution:

$$f * g(x) = \sum_{d(x)=d(z)} f(xz^{-1})g(z).$$

Groupoid algebras

- k is a commutative ring with unit endowed with the discrete topology.
- \mathcal{G} is an ample groupoid.
- &G denotes the continuous &-valued functions on G with compact support (adjusted as usual for non-Hausdorff).
- Ample implies there are many such functions.
- The product is convolution:

$$f * g(x) = \sum_{d(x)=d(z)} f(xz^{-1})g(z).$$

• The sum is finite because fibers of d are discrete and f, g have compact support.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Groupoid algebras II

• $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- If G is a discrete group, $\Bbbk G$ is the usual group algebra and similarly for discrete groupoids.

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- If G is a discrete group, $\Bbbk G$ is the usual group algebra and similarly for discrete groupoids.
- If $\mathcal{G} = \mathcal{G}_0$, the product on $\Bbbk \mathcal{G}$ is pointwise multiplication.
Groupoid algebras II

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- If G is a discrete group, $\Bbbk G$ is the usual group algebra and similarly for discrete groupoids.
- If $\mathcal{G} = \mathcal{G}_0$, the product on $\Bbbk \mathcal{G}$ is pointwise multiplication.
- $\Bbbk \mathcal{G}$ is unital iff \mathcal{G}_0 is compact.

Groupoid algebras II

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- If G is a discrete group, $\Bbbk G$ is the usual group algebra and similarly for discrete groupoids.
- If $\mathcal{G} = \mathcal{G}_0$, the product on $\Bbbk \mathcal{G}$ is pointwise multiplication.
- $\mathbb{k}\mathcal{G}$ is unital iff \mathcal{G}_0 is compact.
- Leavitt path algebras can be obtained from the usual groupoid for graph C^* -algebras (see also later in the talk).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local bisections

• An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

Local bisections

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

 The compact local bisections of an ample groupoid G form an inverse semigroup Γ(G).

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

- The compact local bisections of an ample groupoid G form an inverse semigroup Γ(G).
- The map $\Gamma(\mathcal{G}) \to \Bbbk \mathcal{G}$ given by $U \mapsto \chi_U$ is an injective homomorphism.

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

- The compact local bisections of an ample groupoid G form an inverse semigroup Γ(G).
- The map $\Gamma(\mathcal{G}) \to \Bbbk \mathcal{G}$ given by $U \mapsto \chi_U$ is an injective homomorphism.
- It extends to a surjective algebra homomorphism $\Bbbk\Gamma(\mathcal{G}) \to \Bbbk\mathcal{G}.$

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

- The compact local bisections of an ample groupoid G form an inverse semigroup Γ(G).
- The map $\Gamma(\mathcal{G}) \to \mathbb{k}\mathcal{G}$ given by $U \mapsto \chi_U$ is an injective homomorphism.
- It extends to a surjective algebra homomorphism $\Bbbk\Gamma(\mathcal{G}) \to \Bbbk\mathcal{G}.$
- When G is Hausdorff, the kernel is generated by *χ*_U + *χ*_V − *χ*_{U∪V} with U, V disjoint compact open subsets of G₀

Isotropy

• The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g: x \to x$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

lsotropy

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g \colon x \to x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g: x \to x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}_0$.

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g: x \to x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}_0$.
- Effectiveness is equivalent to Γ(G) acting faithfully on G₀.

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g: x \to x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}_0$.
- Effectiveness is equivalent to Γ(G) acting faithfully on G₀.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g: x \to x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}_0$.
- Effectiveness is equivalent to Γ(G) acting faithfully on G₀.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:
 - $\operatorname{supp}(f) \subseteq \mathcal{G}_{iso}$

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g: x \to x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}_0$.
- Effectiveness is equivalent to Γ(G) acting faithfully on G₀.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:

•
$$\operatorname{supp}(f) \subseteq \mathcal{G}_{iso}$$

•
$$f(ghg^{-1}) = f(h).$$

Isotropy

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g \colon x \to x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}_0$.
- Effectiveness is equivalent to Γ(G) acting faithfully on G₀.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:

•
$$\operatorname{supp}(f) \subseteq \mathcal{G}_{iso}$$

•
$$f(ghg^{-1}) = f(h).$$

Theorem (BS)

The class functions form the center of $\Bbbk G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Orbits and minimality

• The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g: x \to y$ exists.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Orbits and minimality

- The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g \colon x \to y$ exists.
- \mathcal{G} is minimal if every orbit is dense.

Orbits and minimality

- The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g \colon x \to y$ exists.
- \mathcal{G} is minimal if every orbit is dense.

Theorem (L. O. Clark, C. Edie-Michelle) Let \mathcal{G} be a minimal, Hausdorff ample groupoid.

Orbits and minimality

- The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g \colon x \to y$ exists.
- *G* is minimal if every orbit is dense.

Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a minimal, Hausdorff ample groupoid.

1. If \mathcal{G}_0 is compact and \mathcal{G} is effective, then $Z(\Bbbk \mathcal{G}) = \Bbbk 1_{\mathcal{G}_0}$.

Orbits and minimality

- The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g \colon x \to y$ exists.
- *G* is minimal if every orbit is dense.

Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a minimal, Hausdorff ample groupoid.

- 1. If \mathcal{G}_0 is compact and \mathcal{G} is effective, then $Z(\Bbbk \mathcal{G}) = \Bbbk 1_{\mathcal{G}_0}$.
- 2. If \mathcal{G}_0 is not compact, then $Z(\mathbb{k}\mathcal{G}) = 0$.

Simplicity

Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a Hausdorff ample groupoid and \Bbbk a field. Then $\Bbbk \mathcal{G}$ is simple if and only if \mathcal{G} is effective and minimal.

Simplicity

Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a Hausdorff ample groupoid and \Bbbk a field. Then $\Bbbk \mathcal{G}$ is simple if and only if \mathcal{G} is effective and minimal.

• This was first proved by J.H. Brown, L.O. Clark, C. Farthing and A. Sims over C.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Morita equivalence

 If Z is a locally compact space and f: Z → G₀ is continuous, there is a pullback groupoid G[Z].

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Morita equivalence

- If Z is a locally compact space and f: Z → G₀ is continuous, there is a pullback groupoid G[Z].
- $\mathcal{G}[Z]_0 = Z, \ \mathcal{G}[Z]_1 = \{(z, g, z') \mid g \colon f(z) \to f(z')\}.$

Representation Theory

Morita equivalence

- If Z is a locally compact space and $f: Z \to \mathcal{G}_0$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]_0 = Z, \ \mathcal{G}[Z]_1 = \{(z, g, z') \mid g \colon f(z) \to f(z')\}.$
- Groupoids G and H are Morita equivalent if there is a locally compact space Z and continuous open surjections p: Z → G₀ and q: Z → H₀ such that G[Z] ≅ H[Z].

Representation Theory

Morita equivalence

- If Z is a locally compact space and f: Z → G₀ is continuous, there is a pullback groupoid G[Z].
- $\mathcal{G}[Z]_0 = Z, \ \mathcal{G}[Z]_1 = \{(z, g, z') \mid g \colon f(z) \to f(z')\}.$
- Groupoids G and H are Morita equivalent if there is a locally compact space Z and continuous open surjections p: Z → G₀ and q: Z → H₀ such that G[Z] ≅ H[Z].

Theorem (L. O. Clark, A. Sims)

If \mathcal{G} and \mathcal{H} are Morita equivalent, Hausdorff ample groupoids, then $\mathbb{k}\mathcal{G}$ is Morita equivalent to $\mathbb{k}\mathcal{H}$.

Morita equivalence

- If Z is a locally compact space and $f: Z \to \mathcal{G}_0$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]_0 = Z, \ \mathcal{G}[Z]_1 = \{(z, g, z') \mid g \colon f(z) \to f(z')\}.$
- Groupoids G and H are Morita equivalent if there is a locally compact space Z and continuous open surjections p: Z → G₀ and q: Z → H₀ such that G[Z] ≅ H[Z].

Theorem (L. O. Clark, A. Sims)

If \mathcal{G} and \mathcal{H} are Morita equivalent, Hausdorff ample groupoids, then $\Bbbk \mathcal{G}$ is Morita equivalent to $\Bbbk \mathcal{H}$.

• Explains why the same moves preserve Morita equivalence between graph C^* -algebras and Leavitt path algebras.

Schützenberger representations

• Fix $x \in \mathcal{G}_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Fix $x \in \mathcal{G}_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Fix $x \in \mathcal{G}_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Fix $x \in \mathcal{G}_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .
- So $\Bbbk L_x$ is a free $\Bbbk G_x$ -module.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Fix $x \in \mathcal{G}_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .
- So $\Bbbk L_x$ is a free $\& G_x$ -module.
- It is in fact a $\mathbb{k}G$ - $\mathbb{k}G_x$ -bimodule.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Fix $x \in \mathcal{G}_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .
- So $\Bbbk L_x$ is a free $\& G_x$ -module.
- It is in fact a $\mathbb{k}\mathcal{G}$ - $\mathbb{k}G_x$ -bimodule.
- If $f \in \Bbbk \mathcal{G}$ and $t \in L_x$, then

$$f \cdot t = \sum_{d(s)=r(t)} f(s)st.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Induction and restriction functors

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x \operatorname{-mod} \to \Bbbk \mathcal{G} \operatorname{-mod}$ given by

 $M \longmapsto \Bbbk L_x \otimes_{\Bbbk G_x} M.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Induction and restriction functors

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x \operatorname{-mod} \to \Bbbk \mathcal{G} \operatorname{-mod}$ given by

$$M \longmapsto \Bbbk L_x \otimes_{\Bbbk G_x} M.$$

• It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Induction and restriction functors

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x \operatorname{-mod} \to \Bbbk \mathcal{G} \operatorname{-mod}$ given by

$$M \longmapsto \Bbbk L_x \otimes_{\Bbbk G_x} M.$$

- It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.
- Ind_x preserves simple modules.

Induction and restriction functors

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x \operatorname{-mod} \to \Bbbk \mathcal{G} \operatorname{-mod}$ given by

$$M \longmapsto \Bbbk L_x \otimes_{\Bbbk G_x} M.$$

- It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.
- Ind_x preserves simple modules.
- Res_x sends simple modules to simple modules or 0.

Induction and restriction functors

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x \operatorname{-mod} \to \Bbbk \mathcal{G} \operatorname{-mod}$ given by

$$M\longmapsto \Bbbk L_x\otimes_{\Bbbk G_x} M.$$

- It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.
- Ind_x preserves simple modules.
- Res_x sends simple modules to simple modules or 0.

Theorem (BS)

Let \Bbbk be a field and \mathcal{G} an ample groupoid. Then the finite dimensional simple $\Bbbk \mathcal{G}$ -modules are those of the form $\operatorname{Ind}_x(M)$ with the orbit of x finite and M a finite dimensional simple $\Bbbk G_x$ -module.

Action on orbits

• $\Bbbk L_x \otimes_{\Bbbk G_x} \Bbbk = \Bbbk \mathcal{O}_x$ where \mathcal{O}_x is the orbit of x.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Action on orbits

- $\Bbbk L_x \otimes_{\Bbbk G_x} \Bbbk = \Bbbk \mathcal{O}_x$ where \mathcal{O}_x is the orbit of x.
- The action is

$$f \cdot y = \sum_{d(s)=y} f(s)r(s).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Action on orbits

- $\Bbbk L_x \otimes_{\Bbbk G_x} \Bbbk = \Bbbk \mathcal{O}_x$ where \mathcal{O}_x is the orbit of x.
- The action is

$$f \cdot y = \sum_{d(s)=y} f(s)r(s).$$

• This is a simple $\Bbbk \mathcal{G}$ -module.

Action on orbits

- $\Bbbk L_x \otimes_{\Bbbk G_x} \Bbbk = \Bbbk \mathcal{O}_x$ where \mathcal{O}_x is the orbit of x.
- The action is

$$f \cdot y = \sum_{d(s)=y} f(s)r(s).$$

- This is a simple $\Bbbk \mathcal{G}$ -module.
- Using ideas from the proof of the simplicity criterion, one can show that G is effective iff ⊕_{x∈G0} kO_x is faithful.

Action on orbits

- $\Bbbk L_x \otimes_{\Bbbk G_x} \Bbbk = \Bbbk \mathcal{O}_x$ where \mathcal{O}_x is the orbit of x.
- The action is

$$f \cdot y = \sum_{d(s)=y} f(s)r(s).$$

- This is a simple $\Bbbk \mathcal{G}$ -module.
- Using ideas from the proof of the simplicity criterion, one can show that G is effective iff ⊕_{x∈G0} kO_x is faithful.

Theorem (BS, unpublished)

Let \mathcal{G} be an effective, Hausdorff ample groupoid.

Action on orbits

- $\Bbbk L_x \otimes_{\Bbbk G_x} \Bbbk = \Bbbk \mathcal{O}_x$ where \mathcal{O}_x is the orbit of x.
- The action is

$$f \cdot y = \sum_{d(s)=y} f(s)r(s).$$

- This is a simple $\Bbbk \mathcal{G}$ -module.
- Using ideas from the proof of the simplicity criterion, one can show that G is effective iff ⊕_{x∈G0} kO_x is faithful.

Theorem (BS, unpublished)

Let \mathcal{G} be an effective, Hausdorff ample groupoid.

1. If \Bbbk semiprimitive, then $\Bbbk G$ is semiprimitive.

Action on orbits

- $\Bbbk L_x \otimes_{\Bbbk G_x} \Bbbk = \Bbbk \mathcal{O}_x$ where \mathcal{O}_x is the orbit of x.
- The action is

$$f \cdot y = \sum_{d(s)=y} f(s)r(s).$$

- This is a simple $\Bbbk \mathcal{G}$ -module.
- Using ideas from the proof of the simplicity criterion, one can show that G is effective iff ⊕_{x∈G0} kO_x is faithful.

Theorem (BS, unpublished)

Let \mathcal{G} be an effective, Hausdorff ample groupoid.

- 1. If \Bbbk semiprimitive, then $\Bbbk G$ is semiprimitive.
- 2. If \Bbbk is a field and \mathcal{G} has a dense orbit, then $\Bbbk \mathcal{G}$ is primitive.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

$$ss^*s = s$$
 and $s^*ss^* = s^*$.

• Groups are inverse semigroups.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.
- S is partially ordered by $s \le t$ if s = te for some $e \in E(S)$.

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.
- S is partially ordered by $s \le t$ if s = te for some $e \in E(S)$.
- E(S) is a semilattice with $e \wedge f = ef$.

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.
- S is partially ordered by $s \le t$ if s = te for some $e \in E(S)$.
- E(S) is a semilattice with $e \wedge f = ef$.
- The pseudogroup of all homeomorphisms between open subsets of a topological space is an inverse semigroup.

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.
- S is partially ordered by $s \le t$ if s = te for some $e \in E(S)$.
- E(S) is a semilattice with $e \wedge f = ef$.
- The pseudogroup of all homeomorphisms between open subsets of a topological space is an inverse semigroup.
- The order here is restriction.

Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.
- S is partially ordered by $s \le t$ if s = te for some $e \in E(S)$.
- E(S) is a semilattice with $e \wedge f = ef$.
- The pseudogroup of all homeomorphisms between open subsets of a topological space is an inverse semigroup.
- The order here is restriction.
- Often we will assume S has a zero element.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Actions of inverse semigroups

• Let X be a Hausdorff topological space with a basis of compact open sets.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Actions of inverse semigroups

- Let X be a Hausdorff topological space with a basis of compact open sets.
- Suppose that ${\cal S}$ acts on ${\cal X}$ by homeomorphisms between compact open subsets.

Actions of inverse semigroups

- Let X be a Hausdorff topological space with a basis of compact open sets.
- Suppose that ${\cal S}$ acts on ${\cal X}$ by homeomorphisms between compact open subsets.
- We can form a groupoid of germs $S \ltimes X$.

Actions of inverse semigroups

- Let X be a Hausdorff topological space with a basis of compact open sets.
- Suppose that ${\cal S}$ acts on ${\cal X}$ by homeomorphisms between compact open subsets.
- We can form a groupoid of germs $S \ltimes X$.
- For group actions, this is the usual action groupoid.

Paterson's universal groupoid

Let *E*(*S*) ⊆ {0,1}^{E(S)} be the space of non-zero homomorphisms (characters) χ: E(S) → {0,1}.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Paterson's universal groupoid

• Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.

• S acts on
$$E(S)$$
 by $s \cdot \chi(e) = \chi(s^*es)$.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widehat{E}(S)$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widehat{E}(\widehat{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $\mathcal{G}(S)$ is $S \ltimes \widehat{E}(S)$.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widetilde{E}(\widetilde{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s\cdot\chi\neq 0.$
- The universal groupoid $\mathcal{G}(S)$ is $S \ltimes \widehat{E}(\widehat{S})$.
- $\mathcal{G}(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widetilde{E}(\widetilde{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s\cdot\chi\neq 0.$
- The universal groupoid $\mathcal{G}(S)$ is $S \ltimes \widehat{E}(\widehat{S})$.
- $\mathcal{G}(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.
- In this case we call S Hausdorff.

Paterson's universal groupoid

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widehat{E}(\widehat{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s\cdot\chi\neq 0.$
- The universal groupoid $\mathcal{G}(S)$ is $S \ltimes \widehat{E}(\widehat{S})$.
- $\mathcal{G}(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.
- In this case we call S Hausdorff.

Theorem (BS)

For any commutative ring \Bbbk with unit, $\Bbbk S \cong \Bbbk \mathcal{G}(S)$.

Paterson's universal groupoid

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widetilde{E}(\widetilde{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s\cdot\chi\neq 0.$
- The universal groupoid $\mathcal{G}(S)$ is $S \ltimes \widehat{E}(\widehat{S})$.
- $\mathcal{G}(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.
- In this case we call S Hausdorff.

Theorem (BS)

For any commutative ring \Bbbk with unit, $\Bbbk S \cong \Bbbk \mathcal{G}(S)$.

• This generalizes Paterson's result for C*-algebras and my result for finite inverse semigroups.

Tight characters

• Let S be an inverse semigroup with 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tight characters

- Let S be an inverse semigroup with 0.
- Idempotents $e_1, \ldots, e_n \leq e \text{ cover } e \text{ if }$

$$f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0.$$

Representation Theory

Inverse semigroups

Future work

Tight characters

- Let S be an inverse semigroup with 0.
- Idempotents $e_1, \ldots, e_n \leq e$ cover e if

$$f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0.$$

• A character $\chi \colon E(S) \to \{0,1\}$ is tight if $\chi(0) = 0$ and if e_1, \ldots, e_n cover e implies

$$\chi(e) = \max_{i=1}^{n} \{\chi(e_i)\}.$$

Tight characters

- Let S be an inverse semigroup with 0.
- Idempotents $e_1, \ldots, e_n \leq e$ cover e if

$$f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0.$$

• A character $\chi \colon E(S) \to \{0,1\}$ is tight if $\chi(0) = 0$ and if e_1, \ldots, e_n cover e implies

$$\chi(e) = \max_{i=1}^{n} \{\chi(e_i)\}.$$

• Tight characters were introduced by R. Exel.

Tight characters

- Let S be an inverse semigroup with 0.
- Idempotents $e_1, \ldots, e_n \leq e$ cover e if

$$f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0.$$

• A character $\chi \colon E(S) \to \{0,1\}$ is tight if $\chi(0) = 0$ and if e_1, \ldots, e_n cover e implies

$$\chi(e) = \max_{i=1}^{n} \{\chi(e_i)\}.$$

- Tight characters were introduced by R. Exel.
- χ is tight iff $\chi^{-1}(1)$ is a limit of ultrafilters.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Polycyclic monoids

 If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations x*x = 1, x*y = 0 for x, y ∈ X and x ≠ y.
Polycyclic monoids

- If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations x*x = 1, x*y = 0 for x, y ∈ X and x ≠ y.
- If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.

Polycyclic monoids

- If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations x*x = 1, x*y = 0 for x, y ∈ X and x ≠ y.
- If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.
- A character χ on $E(P_X)$ is tight iff it satisfies the 'Cuntz relation'

$$\sum_{i=1}^{n} \chi(x_i x_i^*) = 1.$$

Polycyclic monoids

- If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations x*x = 1, x*y = 0 for x, y ∈ X and x ≠ y.
- If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.
- A character χ on $E(P_X)$ is tight iff it satisfies the 'Cuntz relation'

$$\sum_{i=1}^n \chi(x_i x_i^*) = 1.$$

• If X is infinite, then no idempotent admits a non-trivial finite cover and so all characters are tight.

Polycyclic monoids

- If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations x*x = 1, x*y = 0 for x, y ∈ X and x ≠ y.
- If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.
- A character χ on $E(P_X)$ is tight iff it satisfies the 'Cuntz relation'

$$\sum_{i=1}^{n} \chi(x_i x_i^*) = 1.$$

- If X is infinite, then no idempotent admits a non-trivial finite cover and so all characters are tight.
- P_X is Hausdorff.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tight algebras

- The space $\widehat{E}(\widehat{S})_T$ of tight characters is closed and S-invariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tight algebras

- The space $\widehat{E}(\widehat{S})_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \ltimes \widehat{E(S)}_T$ is the tight groupoid of S.

Tight algebras

- The space $\widehat{E}(\widehat{S})_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \ltimes \widehat{E(S)}_T$ is the tight groupoid of S.
- Recall that the idempotents of a commutative ring form a generalized boolean algebra where $e \lor f = e + f ef$.

Tight algebras

- The space $\widehat{E}(\widehat{S})_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \ltimes \widehat{E(S)}_T$ is the tight groupoid of S.
- Recall that the idempotents of a commutative ring form a generalized boolean algebra where $e \lor f = e + f ef$.

Theorem (BS, unpublished)

Let S be a Hausdorff inverse semigroup. Then $\mathbb{k}\mathcal{G}(S)_T$ is isomorphic to $\mathbb{k}S/I$ where I is the ideal generated by elements of the form $e - (e_1 \lor \cdots \lor e_n)$ such that e_1, \ldots, e_n cover e.

Tight algebras

- The space $\widehat{E}(\widehat{S})_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \ltimes \widehat{E(S)}_T$ is the tight groupoid of S.
- Recall that the idempotents of a commutative ring form a generalized boolean algebra where $e \lor f = e + f ef$.

Theorem (BS, unpublished)

Let S be a Hausdorff inverse semigroup. Then $\mathbb{k}\mathcal{G}(S)_T$ is isomorphic to $\mathbb{k}S/I$ where I is the ideal generated by elements of the form $e - (e_1 \vee \cdots \vee e_n)$ such that e_1, \ldots, e_n cover e.

• $\mathbb{k}\mathcal{G}(P_X)_T$ is the Leavitt path algebra analogue of \mathcal{O}_X .

Tight algebras

- The space $\widehat{E}(\widehat{S})_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \ltimes \widehat{E(S)}_T$ is the tight groupoid of S.
- Recall that the idempotents of a commutative ring form a generalized boolean algebra where $e \lor f = e + f ef$.

Theorem (BS, unpublished)

Let S be a Hausdorff inverse semigroup. Then $\& \mathcal{G}(S)_T$ is isomorphic to & S/I where I is the ideal generated by elements of the form $e - (e_1 \lor \cdots \lor e_n)$ such that e_1, \ldots, e_n cover e.

- $\mathbb{k}\mathcal{G}(P_X)_T$ is the Leavitt path algebra analogue of \mathcal{O}_X .
- More generally, Leavitt path algebras are the tight algebras of graph inverse semigroups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simple inverse semigroup algebras

• Let \Bbbk be a field and S an inverse semigroup.

- Let \Bbbk be a field and S an inverse semigroup.
- There is the augmentation $\Bbbk S \to \Bbbk$ so $\Bbbk S$ is not simple.

- Let \Bbbk be a field and S an inverse semigroup.
- There is the augmentation $\Bbbk S \to \Bbbk$ so $\Bbbk S$ is not simple.
- Assume *S* has a zero.

- Let \Bbbk be a field and S an inverse semigroup.
- There is the augmentation $\Bbbk S \to \Bbbk$ so $\Bbbk S$ is not simple.
- Assume S has a zero.
- Redefine $\Bbbk S$ to identify the zero of S and \Bbbk .

- Let \Bbbk be a field and S an inverse semigroup.
- There is the augmentation $\Bbbk S \to \Bbbk$ so $\Bbbk S$ is not simple.
- Assume S has a zero.
- Redefine $\Bbbk S$ to identify the zero of S and \Bbbk .
- Now $\Bbbk S$ can be simple!

- Let \Bbbk be a field and S an inverse semigroup.
- There is the augmentation $\Bbbk S \to \Bbbk$ so $\Bbbk S$ is not simple.
- Assume S has a zero.
- Redefine $\Bbbk S$ to identify the zero of S and \Bbbk .
- Now $\Bbbk S$ can be simple!
- If S has a non-trivial homomorphic image, $\Bbbk S$ is not simple.

- Let \Bbbk be a field and S an inverse semigroup.
- There is the augmentation $\Bbbk S \to \Bbbk$ so $\Bbbk S$ is not simple.
- Assume S has a zero.
- Redefine $\Bbbk S$ to identify the zero of S and \Bbbk .
- Now $\Bbbk S$ can be simple!
- If S has a non-trivial homomorphic image, $\Bbbk S$ is not simple.
- A semigroup with no non-trivial homomorphic images is called congruence-free.

Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\Bbbk S$ is simple iff no idempotent admits a non-trivial finite cover.

Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\Bbbk S$ is simple iff no idempotent admits a non-trivial finite cover.

• It is natural to ask when the tight algebra is simple.

Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\Bbbk S$ is simple iff no idempotent admits a non-trivial finite cover.

• It is natural to ask when the tight algebra is simple.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\Bbbk \mathcal{G}(S)_T$ is simple.

Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\Bbbk S$ is simple iff no idempotent admits a non-trivial finite cover.

• It is natural to ask when the tight algebra is simple.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\Bbbk \mathcal{G}(S)_T$ is simple.

• The converse is false.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Effectiveness and minimality

• Let S be a Hausdorff inverse semigroup with zero.

Effectiveness and minimality

- Let S be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.

Effectiveness and minimality

- Let S be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if SsS = S for all $s \neq 0$.

Effectiveness and minimality

- Let ${\cal S}$ be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if SsS = S for all $s \neq 0$.
- S is congruence-free iff it is both 0-disjunctive and 0-simple.

Effectiveness and minimality

- Let ${\cal S}$ be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if SsS = S for all $s \neq 0$.
- S is congruence-free iff it is both 0-disjunctive and 0-simple.

Theorem (BS, unpublished)

1. $\mathcal{G}(S)_T$ is effective if S is 0-disjunctive.

Effectiveness and minimality

- Let ${\cal S}$ be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if SsS = S for all $s \neq 0$.
- S is congruence-free iff it is both 0-disjunctive and 0-simple.

Theorem (BS, unpublished)

- 1. $\mathcal{G}(S)_T$ is effective if S is 0-disjunctive.
- 2. $\mathcal{G}(S)_T$ is minimal if S is 0-simple.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Leavitt path algebras

• Let G be a directed graph and \Bbbk a field.

- Let G be a directed graph and \Bbbk a field.
- The Leavitt path algebra $L_{\Bbbk}(G)$ is the k-algebra with the same presentation as the graph C^* -algebra of G.

- Let G be a directed graph and \Bbbk a field.
- The Leavitt path algebra $L_{\Bbbk}(G)$ is the k-algebra with the same presentation as the graph C^* -algebra of G.
- There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X .

- Let G be a directed graph and \Bbbk a field.
- The Leavitt path algebra $L_{\Bbbk}(G)$ is the k-algebra with the same presentation as the graph C^* -algebra of G.
- There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X .
- A graph inverse semigroup is congruence-free iff G is strongly connected and all vertices have in-degree ≥ 2.

- Let G be a directed graph and \Bbbk a field.
- The Leavitt path algebra $L_{\Bbbk}(G)$ is the k-algebra with the same presentation as the graph C^* -algebra of G.
- There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X .
- A graph inverse semigroup is congruence-free iff G is strongly connected and all vertices have in-degree ≥ 2.
- We recover the result that G strongly connected with no vertex of in-degree 1 implies $L_{\Bbbk}(G)$ is simple.

- Let G be a directed graph and \Bbbk a field.
- The Leavitt path algebra $L_{\Bbbk}(G)$ is the k-algebra with the same presentation as the graph C^* -algebra of G.
- There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X .
- A graph inverse semigroup is congruence-free iff G is strongly connected and all vertices have in-degree ≥ 2.
- We recover the result that G strongly connected with no vertex of in-degree 1 implies L_k(G) is simple.
- We also recover semiprimitivity of L_k(G) over a semiprimitive base ring in the case that no vertex has in-degree 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future work

• Characterize primitive and semiprimitive groupoid algebras.

Future work

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.
- Use groupoid algebras to understand cross products.

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.
- Use groupoid algebras to understand cross products.
- Characterize when the tight algebra of an inverse semigroup is simple in semigroup theoretic terms.

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.
- Use groupoid algebras to understand cross products.
- Characterize when the tight algebra of an inverse semigroup is simple in semigroup theoretic terms.
- Deal with the non-Hausdorff case.

Introduction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The end

Thank you for your attention!

Obrigado pela sua atenção