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Background

• Groupoid C∗-algebras have been a fruitful and unifying
notion in the theory of operator algebras since
J. Renault’s influential monograph.

• They simultaneously generalize:
• commutative C∗-algebras
• group C∗-algebras
• group action C∗-algebras
• Cuntz-Krieger/graph C∗-algebras
• inverse semigroup C∗-algebras.

• Algebraic properties can often be seen from the groupoid.

• Morita equivalence of groupoid algebras is often explained
by a Morita equivalence of the groupoids.
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Étale groupoids

• Étale groupoids form one of the most important classes of
groupoids.

• G = (G0,G1) is étale if d : G1 → G0 is a local
homeomorphism.

• We assume that G0 is locally compact Hausdorff, but G1
need not be Hausdorff.

• An étale groupoid G is ample if G0 has a basis of compact
open sets.

• Many of the most important examples come from ample
groupoids: discrete group algebras, Cuntz-Krieger/graph
algebras and inverse semigroup algebras.

• Counting measure gives a left Haar system in this context.
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Discrete analogues

• Many groupoid C∗-algebras have analogues in the context
of associative algebras.

• Group algebras and inverse semigroup algebras are
obvious examples.

• Leavitt path algebras are discrete analogues of
Cuntz-Krieger algebras.

• Discrete analogues of algebras of higher rank graphs have
also been considered.

• Surprising similarities between operator algebras and their
discrete analogues have been known for some time.
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History

• In 2009 I introduced a discrete analogue of groupoid
C∗-algebras for ample groupoids.

• My hope was that it would explain many of the similarities
between the discrete and continuous setting, especially for
Leavitt-Path algebras.

• Initially, I focused on applications to inverse semigroup
algebras.

• Groupoid algebras over C were rediscovered later by
L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who
kindly dubbed them “Steinberg algebras.”

• My hopes have since been borne out by J. Brown,
L. O. Clark, C. Farthing, A. Sims and M. Tomforde who
produce new results faster than I can keep up with.



Introduction Groupoid Algebras Representation Theory Inverse semigroups Future work

History

• In 2009 I introduced a discrete analogue of groupoid
C∗-algebras for ample groupoids.

• My hope was that it would explain many of the similarities
between the discrete and continuous setting, especially for
Leavitt-Path algebras.

• Initially, I focused on applications to inverse semigroup
algebras.

• Groupoid algebras over C were rediscovered later by
L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who
kindly dubbed them “Steinberg algebras.”

• My hopes have since been borne out by J. Brown,
L. O. Clark, C. Farthing, A. Sims and M. Tomforde who
produce new results faster than I can keep up with.



Introduction Groupoid Algebras Representation Theory Inverse semigroups Future work

History

• In 2009 I introduced a discrete analogue of groupoid
C∗-algebras for ample groupoids.

• My hope was that it would explain many of the similarities
between the discrete and continuous setting, especially for
Leavitt-Path algebras.

• Initially, I focused on applications to inverse semigroup
algebras.

• Groupoid algebras over C were rediscovered later by
L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who
kindly dubbed them “Steinberg algebras.”

• My hopes have since been borne out by J. Brown,
L. O. Clark, C. Farthing, A. Sims and M. Tomforde who
produce new results faster than I can keep up with.



Introduction Groupoid Algebras Representation Theory Inverse semigroups Future work

History

• In 2009 I introduced a discrete analogue of groupoid
C∗-algebras for ample groupoids.

• My hope was that it would explain many of the similarities
between the discrete and continuous setting, especially for
Leavitt-Path algebras.

• Initially, I focused on applications to inverse semigroup
algebras.

• Groupoid algebras over C were rediscovered later by
L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who
kindly dubbed them “Steinberg algebras.”

• My hopes have since been borne out by J. Brown,
L. O. Clark, C. Farthing, A. Sims and M. Tomforde who
produce new results faster than I can keep up with.



Introduction Groupoid Algebras Representation Theory Inverse semigroups Future work

History

• In 2009 I introduced a discrete analogue of groupoid
C∗-algebras for ample groupoids.

• My hope was that it would explain many of the similarities
between the discrete and continuous setting, especially for
Leavitt-Path algebras.

• Initially, I focused on applications to inverse semigroup
algebras.

• Groupoid algebras over C were rediscovered later by
L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who
kindly dubbed them “Steinberg algebras.”

• My hopes have since been borne out by J. Brown,
L. O. Clark, C. Farthing, A. Sims and M. Tomforde who
produce new results faster than I can keep up with.



Introduction Groupoid Algebras Representation Theory Inverse semigroups Future work

Groupoid algebras

• k is a commutative ring with unit endowed with the
discrete topology.

• G is an ample groupoid.

• kG denotes the continuous k-valued functions on G with
compact support (adjusted as usual for non-Hausdorff).

• Ample implies there are many such functions.

• The product is convolution:

f ∗ g(x) =
∑

d(x)=d(z)

f(xz−1)g(z).

• The sum is finite because fibers of d are discrete and f, g
have compact support.
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Groupoid algebras II

• C∗(G) is the completion of CG (Stone-Weierstrass).

• If G is a discrete group, kG is the usual group algebra
and similarly for discrete groupoids.

• If G = G0, the product on kG is pointwise multiplication.

• kG is unital iff G0 is compact.

• Leavitt path algebras can be obtained from the usual
groupoid for graph C∗-algebras (see also later in the talk).
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Local bisections

• An open subset U ⊆ G is a local bisection if d|U , r|U are
homeomorphisms to their images.

• Local bisections are closed under setwise product:

UV = {uv | u ∈ U, v ∈ V }.

• The compact local bisections of an ample groupoid G
form an inverse semigroup Γ(G).

• The map Γ(G)→ kG given by U 7→ χU is an injective
homomorphism.

• It extends to a surjective algebra homomorphism
kΓ(G)→ kG.

• When G is Hausdorff, the kernel is generated by
χU + χV − χU∪V with U, V disjoint compact open subsets
of G0
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Isotropy

• The isotropy group Gx of x ∈ G0 consists of all g : x→ x.

• The isotropy bundle Giso =
⋃

x∈X Gx.

• G is effective if Int(Giso) = G0.

• Effectiveness is equivalent to Γ(G) acting faithfully on G0.
• f ∈ kG is a class function if:

• supp(f) ⊆ Giso
• f(ghg−1) = f(h).

Theorem (BS)

The class functions form the center of kG.
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Orbits and minimality

• The orbit of x ∈ G0 consists of all y such that g : x→ y
exists.

• G is minimal if every orbit is dense.

Theorem (L. O. Clark, C. Edie-Michelle)

Let G be a minimal, Hausdorff ample groupoid.

1. If G0 is compact and G is effective, then Z(kG) = k1G0 .

2. If G0 is not compact, then Z(kG) = 0.
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Simplicity

Theorem (L. O. Clark, C. Edie-Michelle)

Let G be a Hausdorff ample groupoid and k a field. Then kG
is simple if and only if G is effective and minimal.

• This was first proved by J.H. Brown, L.O. Clark, C.
Farthing and A. Sims over C.
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Morita equivalence

• If Z is a locally compact space and f : Z → G0 is
continuous, there is a pullback groupoid G[Z].

• G[Z]0 = Z, G[Z]1 = {(z, g, z′) | g : f(z)→ f(z′)}.
• Groupoids G and H are Morita equivalent if there is a

locally compact space Z and continuous open surjections
p : Z → G0 and q : Z → H0 such that G[Z] ∼= H[Z].

Theorem (L. O. Clark, A. Sims)

If G and H are Morita equivalent, Hausdorff ample groupoids,
then kG is Morita equivalent to kH.

• Explains why the same moves preserve Morita equivalence
between graph C∗-algebras and Leavitt path algebras.
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Schützenberger representations

• Fix x ∈ G0.

• Let Lx = d−1(x) be the arrows emanating from x.

• The isotropy group Gx acts freely on the right of Lx.

• So kLx is a free kGx-module.

• It is in fact a kG-kGx-bimodule.

• If f ∈ kG and t ∈ Lx, then

f · t =
∑

d(s)=r(t)

f(s)st.
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Induction and restriction functors

• There is an exact functor Indx : kGx-mod→ kG-mod
given by

M 7−→ kLx ⊗kGx M.

• It has a right adjoint Resx : kG-mod→ kGx-mod.

• Indx preserves simple modules.

• Resx sends simple modules to simple modules or 0.

Theorem (BS)

Let k be a field and G an ample groupoid. Then the finite
dimensional simple kG-modules are those of the form
Indx(M) with the orbit of x finite and M a finite dimensional
simple kGx-module.
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Action on orbits

• kLx ⊗kGx k = kOx where Ox is the orbit of x.

• The action is

f · y =
∑

d(s)=y

f(s)r(s).

• This is a simple kG-module.

• Using ideas from the proof of the simplicity criterion, one
can show that G is effective iff

⊕
x∈G0 kOx is faithful.

Theorem (BS, unpublished)

Let G be an effective, Hausdorff ample groupoid.

1. If k semiprimitive, then kG is semiprimitive.

2. If k is a field and G has a dense orbit, then kG is primitive.
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Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all
s ∈ S, there exists unique s∗ ∈ S such that

ss∗s = s and s∗ss∗ = s∗.

• Groups are inverse semigroups.

• The idempotents E(S) commute and form a
subsemigroup.

• S is partially ordered by s ≤ t if s = te for some
e ∈ E(S).

• E(S) is a semilattice with e ∧ f = ef .

• The pseudogroup of all homeomorphisms between open
subsets of a topological space is an inverse semigroup.

• The order here is restriction.

• Often we will assume S has a zero element.
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Actions of inverse semigroups

• Let X be a Hausdorff topological space with a basis of
compact open sets.

• Suppose that S acts on X by homeomorphisms between
compact open subsets.

• We can form a groupoid of germs S nX.

• For group actions, this is the usual action groupoid.
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Paterson’s universal groupoid

• Let Ê(S) ⊆ {0, 1}E(S) be the space of non-zero
homomorphisms (characters) χ : E(S)→ {0, 1}.

• S acts on Ê(S) by s · χ(e) = χ(s∗es).

• The domain of s consists of those characters with
s · χ 6= 0.

• The universal groupoid G(S) is S n Ê(S).

• G(S) is Hausdorff iff the intersection of finitely generated
lower sets of S are finitely generated.

• In this case we call S Hausdorff.

Theorem (BS)

For any commutative ring k with unit, kS ∼= kG(S).

• This generalizes Paterson’s result for C∗-algebras and my
result for finite inverse semigroups.
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• G(S) is Hausdorff iff the intersection of finitely generated
lower sets of S are finitely generated.

• In this case we call S Hausdorff.

Theorem (BS)

For any commutative ring k with unit, kS ∼= kG(S).

• This generalizes Paterson’s result for C∗-algebras and my
result for finite inverse semigroups.



Introduction Groupoid Algebras Representation Theory Inverse semigroups Future work

Paterson’s universal groupoid

• Let Ê(S) ⊆ {0, 1}E(S) be the space of non-zero
homomorphisms (characters) χ : E(S)→ {0, 1}.
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lower sets of S are finitely generated.

• In this case we call S Hausdorff.

Theorem (BS)

For any commutative ring k with unit, kS ∼= kG(S).

• This generalizes Paterson’s result for C∗-algebras and my
result for finite inverse semigroups.
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• Let Ê(S) ⊆ {0, 1}E(S) be the space of non-zero
homomorphisms (characters) χ : E(S)→ {0, 1}.
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Tight characters

• Let S be an inverse semigroup with 0.

• Idempotents e1, . . . , en ≤ e cover e if

f ≤ e and fei = 0 for all i =⇒ f = 0.

• A character χ : E(S)→ {0, 1} is tight if χ(0) = 0 and if
e1, . . . , en cover e implies

χ(e) = maxn
i=1{χ(ei)}.

• Tight characters were introduced by R. Exel.

• χ is tight iff χ−1(1) is a limit of ultrafilters.
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Polycyclic monoids

• If X is a set, the polycyclic monoid PX is the inverse
monoid with generators X and relations x∗x = 1, x∗y = 0
for x, y ∈ X and x 6= y.

• If X = {x1, . . . , xn}, then x1x
∗
1, . . . , xnx

∗
n are

idempotents and form a cover of 1.

• A character χ on E(PX) is tight iff it satisfies the ‘Cuntz
relation’

n∑
i=1

χ(xix
∗
i ) = 1.

• If X is infinite, then no idempotent admits a non-trivial
finite cover and so all characters are tight.

• PX is Hausdorff.
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Tight algebras

• The space Ê(S)T of tight characters is closed and
S-invariant.

• G(S)T = S n Ê(S)T is the tight groupoid of S.

• Recall that the idempotents of a commutative ring form a
generalized boolean algebra where e ∨ f = e+ f − ef .

Theorem (BS, unpublished)

Let S be a Hausdorff inverse semigroup. Then kG(S)T is
isomorphic to kS/I where I is the ideal generated by elements
of the form e− (e1 ∨ · · · ∨ en) such that e1, . . . , en cover e.

• kG(PX)T is the Leavitt path algebra analogue of OX .

• More generally, Leavitt path algebras are the tight
algebras of graph inverse semigroups.
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• G(S)T = S n Ê(S)T is the tight groupoid of S.

• Recall that the idempotents of a commutative ring form a
generalized boolean algebra where e ∨ f = e+ f − ef .

Theorem (BS, unpublished)

Let S be a Hausdorff inverse semigroup. Then kG(S)T is
isomorphic to kS/I where I is the ideal generated by elements
of the form e− (e1 ∨ · · · ∨ en) such that e1, . . . , en cover e.

• kG(PX)T is the Leavitt path algebra analogue of OX .

• More generally, Leavitt path algebras are the tight
algebras of graph inverse semigroups.



Introduction Groupoid Algebras Representation Theory Inverse semigroups Future work

Tight algebras
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Simple inverse semigroup algebras

• Let k be a field and S an inverse semigroup.

• There is the augmentation kS → k so kS is not simple.

• Assume S has a zero.

• Redefine kS to identify the zero of S and k.

• Now kS can be simple!

• If S has a non-trivial homomorphic image, kS is not
simple.

• A semigroup with no non-trivial homomorphic images is
called congruence-free.
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Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse
semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then kS is
simple iff no idempotent admits a non-trivial finite cover.

• It is natural to ask when the tight algebra is simple.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then
kG(S)T is simple.

• The converse is false.
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Effectiveness and minimality

• Let S be a Hausdorff inverse semigroup with zero.

• S is 0-disjunctive if some non-zero element of S is killed
by each proper homomorphism.

• S is 0-simple if SsS = S for all s 6= 0.

• S is congruence-free iff it is both 0-disjunctive and
0-simple.

Theorem (BS, unpublished)

1. G(S)T is effective if S is 0-disjunctive.

2. G(S)T is minimal if S is 0-simple.
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Leavitt path algebras

• Let G be a directed graph and k a field.

• The Leavitt path algebra Lk(G) is the k-algebra with the
same presentation as the graph C∗-algebra of G.

• There is a graph inverse semigroup PG generalizing the
polycyclic inverse monoid PX .

• A graph inverse semigroup is congruence-free iff G is
strongly connected and all vertices have in-degree ≥ 2.

• We recover the result that G strongly connected with no
vertex of in-degree 1 implies Lk(G) is simple.

• We also recover semiprimitivity of Lk(G) over a
semiprimitive base ring in the case that no vertex has
in-degree 1.
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• We recover the result that G strongly connected with no
vertex of in-degree 1 implies Lk(G) is simple.

• We also recover semiprimitivity of Lk(G) over a
semiprimitive base ring in the case that no vertex has
in-degree 1.
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Future work

• Characterize primitive and semiprimitive groupoid
algebras.

• Classify all simple modules for groupoid algebras over a
field.

• Understand the Jacobson radical of a groupoid algebra.

• Obtain as much as possible of the theory of Leavitt
algebras via groupoids.

• Use groupoid algebras to understand cross products.

• Characterize when the tight algebra of an inverse
semigroup is simple in semigroup theoretic terms.

• Deal with the non-Hausdorff case.
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The end

Thank you for your attention!

Obrigado pela sua atenção
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